Regioselective Synthesis of Medium-Sized Bicyclic Butenolides

by Lewis Acid catalyzed Cyclization of

cyclic 1,3-Bis(trimethylsilyloxy)-1,3-butadienes with Oxalyl Chloride

Peter Langer* and Nehad N. R. Saleh

Institut für Organische Chemie der Georg-August-Universität Göttingen,

Tammannstrasse 2, 37077 Göttingen, Germany

Supplementary Material

General Comments. All solvents were dried by standard methods and all reactions were carried out under an inert atmosphere (nitrogen) using glassware dried with a heat-gun *in vacuo*. THF and pentane was freshly distilled from Na, CH₂Cl₂ from CaH₂. For the ¹H and ¹³C NMR spectra (¹H NMR: 250 MHz, ¹³C NMR: 62.5 MHz) the deuterated solvents indicated were used. The multiplicity of the ¹³C NMR signals were determined with the DEPT 135 technique. Yields refer to analytically pure samples. Isomer ratios were derived from suitable ¹H NMR integrals. Mass spectral data (MS) were obtained using the electron ionization (70 eV) or the chemical ionization technique (CI, H₂O). For preparative scale chromatography, silica gel (Merck, 60-200 mesh) was used. For column chromatography, ether (E) and petroleum ether (b. p. 40-70 °C) were used.

Melting points were measured on a Dr. Tottoli apparatus (Büchi) and are uncorrected. Elemental analyses were performed at the microanalytical laboratory of the University of Göttingen.

Representative experimental procedure for the synthesis of bis-silyl enol ethers (3ai). To a THF-solution (30 mL) of LDA, prepared by addition of *n*-BuLi (23.8 mL, 36.5 mmol, solution in *n*-hexane) to a THF-solution of di*iso* propylamine (4.2 mL, 32 mmol), was added dropwise ethyl cycloheptanone-2-carboxylate (**1f**) (2.69 g, 14.6 mmol) at 0 °C. After stirring of the yellow solution for 1.5 h at 0 °C (for **3i**: stirring for 2 h at -78 °C), trimethylchlorosilane (5.5 mL, 43.8 mmol, 3 equiv.) was added (for **3i**: addition of 5 equiv. of trimethylchlorosilane). After stirring for 3 h at 0 °C (for **3i**: warming to 0 °C within 1 h and stirring for 3 h at 0 °C), the solvent was removed *in vacuo*. To the residue was added pentane and the suspension obtained was filtered under nitrogen. The solvent of the filtrate was removed *in vacuo* to give essentially pure 1,3-bis(trimethylsilyloxy)-1,3-butadiene **3f** in 95% crude yield. All bis-silyl enol ethers reported were used without further purification (90-95 % purity, 5-10 % mono-silyl enol ether) and were stored at -30 °C under nitrogen. Due to their instability, all bis-silyl enol ethers were characterized only by NMR and by high-resolution mass spectroscopy.

3a: Starting with ethyl cyclohexanone-2-carboxylate **1a** (1.02 g, 6.00 mmol), **3a** was isolated as a light yellow oil (1.73 g, 92 %). ¹H NMR (CDCl₃, 250 MHz): δ 0.14, 0.21 (2 x s, 2 x 9 H, Me₃Si), 1.22 (t, *J* = 8 Hz, 3 H, CH₃), 1.58 (m, 2 H, CH₂), 2.06, 2.31 (2 x m, 2 x 2 H, CH₂), 3.79 (q, *J* = 8 Hz, 2 H, OCH₂), 4.78 (t, *J* = 6 Hz, 1 H, CH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 0.61, 0.66, 14.80, 23.38, 24.88, 25.62, 63.84, 97.19, 107.25, 147.46, 147.92. MS (EI, 70 eV): 314 (M⁺, 60), 73 (100). HRMS calcd. for C₁₅H₃₀O₃Si₂ 314.1734, found 314.1730.

3b: Starting with *iso*-propyl cyclohexanone-2-carboxylate **1b** (1.012 g, 5.50 mmol), **3b** was isolated as a light yellow oil (1.73 g, 96 %). ¹H NMR (CDCl₃, 250 MHz): δ 0.18, 0.21 (2 x s, 2 x 9 H, Me₃Si), 1.20 (d, *J* = 8 Hz, 6 H, CH₃), 1.60 (m, 2 H, CH₂), 2.11, 2.32 (2 x m, 2 x 2 H, CH₂), 4.30 (hept, *J* = 8 Hz, 1 H, OCH), 4.80 (t, *J* = 6 Hz, 1 H, CH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 0.22, 0.23, 21.87, 23.44, 24.98, 25.98, 69.30, 98.48, 107.55, 146.61, 147.62. MS (EI, 70 eV): 328 (M⁺, 52), 73 (100). HRMS calcd. for C₁₆H₃₂O₃Si₂ 328.1890, found 328.1886.

3c: Starting with methoxyethyl cyclohexanone-2-carboxylate **1c** (1.20 g, 6.00 mmol), **3c** was isolated as a light yellow oil (1.96 g, 95 %). ¹H NMR (CDCl₃, 250 MHz): δ 0.11, 0.20 (2 x s, 2 x 9 H, Me₃Si), 1.58 (m, 2 H, CH₂), 2.08, 2.32 (2 x m, 2 x 2 H, CH₂), 3.36 (s, 3 H, OCH₃), 3.55, 3.89 (2 x m, 2 x 2 H, OCH₂), 4.80 (t, *J* = 6 Hz, 1 H, CH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 0.11, 0.17, 23.27, 24.82, 25.37, 58.81, 67.08, 71.06, 97.45, 107.54, 147.25, 147.60. MS (EI, 70 eV): 344 (M⁺, 62), 73 (100). HRMS calcd. for C₁₆H₃₂O₄Si₂ 344.1839, found 344.1840.

3d: Starting with 2-benzoylcyclohexanone **1e** (1.21 g, 6.00 mmol), **3e** was isolated as a light yellow oil (1.97 g, 95 %). ¹H NMR (CDCl₃, 250 MHz): δ 0.12, 0.20 (2 x s, 2 x 9 H, Me₃Si), 1.40-1.70 (2 x m, 2 H, CH₂), 1.90-2.20 (m, 4 H, CH₂), 4.90 (t, *J* = 6 Hz, 1 H, CH), 7.10-7.50 (m, 5 H, Ph). MS (EI, 70 eV): 346 (M⁺, 22), 73 (100). HRMS calcd. for C₁₉H₃₀O₂Si₂ 346.1784, found 346.1782.

3e: Starting with ethyl cyclopentanone-2-carboxylate **1e** (1.02 g, 6.54 mmol), **3e** was isolated as a deep yellow oil as a 2:1 mixture with the respective mono-silyl enol ether. Since no purification was possible, the crude material (1.5 equiv.) was used in the cyclization reaction with oxalyl chloride. ¹H NMR (CDCl₃, 250 MHz): δ 0.21, 0.23 (2 x s, 2 x 9 H,

Me₃Si), 1.21 (t, J = 8 Hz, 3 H, CH₃), 1.20-1.30 (m, 2 x H, CH₂), 2.24 (m, 2 H, CH₂), 3.80 (q, J = 8 Hz, 2 H, OCH₂CH₃), 4.71 (t, J = 5 Hz, 1 H, CH). MS (EI, 70 eV): 300 (M⁺, 12), 73 (100).

3f: Starting with ethyl cycloheptanone-2-carboxylate **1f** (2.69 g, 14.60 mmol), **3f** was isolated as a light yellow oil (4.55 g, 95 %). ¹H NMR (CDCl₃, 250 MHz): δ 0.10, 0.21 (2 x s, 2 x 9 H, Me₃Si), 1.22 (t, *J* = 7 Hz, 3 H, CH₃), 1.45-1.65 (2 x m, 2 x H, CH₂), 1.95, 2.18 (2 x m, 2 x 2 H, CH₂), 3.82 (q, *J* = 7 Hz, 2 H, OCH₂CH₃), 4.94 (t, *J* = 6.5 Hz, 1 H, CH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 0.30, 0.34, 15.04, 25.64, 26.84, 27.57, 30.38, 63.52, 98.75, 109.35, 150.66, 152.22. MS (EI, 70 eV): 328 (M⁺, 62), 199 (25), 73 (100). HRMS calcd. for C₁₆H₃₂O₃Si₂ 328.1890, found 328.1886.

3g: Starting with 2-pivaloylcycloheptanone **1g** (1.76 g, 9.00 mmol), **3g** was isolated as a light yellow oil (2.94 g, 96 %). ¹H NMR (CDCl₃, 250 MHz): δ 0.10, 0.19 (2 x s, 2 x 9 H, Me₃Si), 1.18 (s, 9 H, CH₃), 1.35-1.75 (m, 6 H, CH₂), 1.98 (m, 2 H, CH₂), 4.90 (t, *J* = 6.5 Hz, 1 H, CH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 0.56, 1.26, 25.78, 26.90, 29.17, 30.32, 31.70, 37.26, 109.25, 117.10, 154.81, 155.69. MS (EI, 70 eV): 340 (M⁺, 56), 283 (36), 215 (57), 73 (100). HRMS calcd. for C₁₈H₃₆O₂Si₂ 340.2254, found 340.2256.

3h: Starting with ethyl cyclooctanone-2-carboxylate **1h** (1.98 g, 10.00 mmol), **3h** was isolated as a light yellow oil (3.25 g, 95 %). ¹H NMR (CDCl₃, 250 MHz): δ 0.17, 0.20 (2 x s, 2 x 9 H, Me₃Si), 1.25 (t, *J* = 7 Hz, 3 H, CH₃), 1.45-1.55 (m, 6 H, CH₂), 1.95, 2.18 (2 x m, 2 x 2 H, CH₂), 3.82 (q, *J* = 7 Hz, 2 H, OCH₂CH₃), 4.75 (t, *J* = 7 Hz, 1 H, CH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 0.92, 1.32, 15.74, 26.42, 27.34, 28.30, 30.02, 30.22, 64.82, 99.36, 107.68, 149.88, 150.66. MS (EI, 70 eV): 342 (M⁺, 80), 317 (32), 73 (100). HRMS calcd. for C₁₇H₃₄O₃Si₂ 342.2047, found 342.2044.

3i: Starting with ethyl cyclohexanone-2-carboxylate **1a** (1.00 g, 4.71 mmol), **3a** was isolated as a light yellow oil (1.58 g, 94 %). ¹H NMR (CDCl₃, 250 MHz): δ 0.10, 0.18 (2 x s, 2 x 9 H, Me₃Si), 1.20-1.45 (m, 10 H, CH₂), 2.00, 2.10 (2 x m, 2 x 2 H, CH₂), 3.48 (s, 3 H, OCH₃), 4.74 (t, *J* = 8 Hz, 1 H, CH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 0.32, 0.50, 24.48, 24.55, 24.60, 25.34, 25.64, 26.94, 28.20, 56.24, 101.64, 115.02, 145.48, 149.96. MS (EI, 70 eV): 356 (M⁺, 92), 341 (62), 73 (100). HRMS calcd. for C₁₈H₃₆O₃Si₂ 356.2203, found 356.2186.

Synthesis of silyl enol ether (5): To a THF-solution (20 mL) of methyl cyclododecanone-2-carboxylate (3.15 g, 14.67 mmol) was added NEt₃ (2.22 g, 22 mmol) and TMSCl (2.40 g, 22 mmol) at 20 °C. After stirring of the suspension for 24 h the solvent was removed *in vacuo*. To the residue was added petroleum ether, the suspension was filtered under nitrogen and the solvent of the filtrate was removed *in vacuo*. The residue was distilled using a kugelrohr apparatus (ot: 110 °C, 0.1 Torr) to give **5** as a colourless oil (3.88 g, 90 %). ¹H NMR (CDCl₃, 250 MHz): δ 0.18, (s, 9 H, Me₃Si), 1.05-1.50 (m, 14 H, CH₂), 1.55-1.65 (m, 2 H, CH₂), 1.80, 2.22, 2.46, 3.52 (4 x m, 4 x 1 H, CH₂), 3.72 (s, 3 H, OCH₃). ¹³C NMR (CDCl₃, 62.5 MHz): δ 0.68, 24.10, 24.75, 24.83, 24.85, 25.13, 25.40, 25.52, 25.72, 25.80, 33.50, 50.62, 115.12, 165.52, 169.98. MS (EI, 70 eV): 312 (M⁺, 62), 297 (100), 73 (80). HRMS calcd. for C₁₇H₃₂O₃Si 312.2121, found 312.2108.

Synthesis of bis-silyl enol ether (3j): To a THF-solution of LDA, prepared by addition of *n*-BuLi (4.4 mmol, 2.35 M solution in *n*-hexane) to a THF-solution (7 mL) of di*iso* propylamine (4.4 mmol) at 0 °C, was added a THF-solution (1.5 mL) of silyl enol ether **5** (1.18 g, 3.8 mmol) at -78 °C. After stirring for 1.5 h at -78 °C, TMSCl (0.52 g, 4.8 mmol) was added. The temperature of the solution was allowed to rise to 0 °C during 1 h and the solution was stirred for 4 h. The solvent was removed *in vacuo* and pentane was added to the residue. The precipitated lithium chloride was removed by filtration under nitrogen and the solvent of the filtrate was removed *in vacuo* to give **3j** as a light yellow oil (1.38 g, 95 %,

4:1-mixture of *E*/*Z*-isomers). ¹H NMR (CDCl₃, 250 MHz, major isomer): δ 0.14, 0.18 (2 x s, 2 x 9 H, Me₃Si), 1.20-1.40 (m, 14 H, CH₂), 2.00-2.10 (m, 4 H, CH₂), 3.48 (s, 3 H, OCH₃), 4.54 (t, *J* = 7 Hz, 1 H, CH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 0.26, 0.35, 24.33, 24.75, 25.79, 26.15, 26.25, 26.15, 26.25, 26.60, 26.84, 56.40, 101.26, 113.78, 146.07, 151.15. MS (EI, 70 eV): 384 (M⁺, 56), 369 (40), 353 (92), 73 (100). HRMS calcd. for C₁₈H₃₆O₃Si₂ 384.2616, found 384.2610.

Alternative procedure for the preparation of 1,3-bis(trimethylsilyloxy)-1,3-butadiene (3d): To an ether-solution (20 mL) of 1d (10 mmol) and triethylamine (2.84 mL, 20.40 mmol), trimethylsilyl trifluoromethanesulfonate (TMSOTf, 3.54 mL, 19.6 mmol) was slowly added at 0 °C. After stirring of the suspension for 2 h the organic layer was separated from the salt using a syringe. The solvent was removed and *in vacuo* to give 3d as a light yellow oil (3.14 g, 91 %).

General procedure for the synthesis of butenolides (4). To a CH₂Cl₂-solution (60 mL) of oxalyl chloride (3.94 mmol, 0.34 mL) and 1,3-bis(trimethylsilyloxy)-1,3-butadiene **3f** (3.28 mmol, 1.08 g) was added a CH₂Cl₂-solution (7 mL) of Me₃SiOTf (0.18 mL, 0.3 equiv.) at -78 °C. The temperature of the reaction mixture was allowed to rise to 20 °C during 12 h. After stirring for 2 h at 20 °C a saturated solution of NaCl was added, the organic layer was separated and the aqueous layer was repeatedly extracted with ether. The combined organic extracts were dried (MgSO₄), filtered and the solvent of the filtrate was removed *in vacuo*. The residue was purified by column chromatography (silica gel, ether / petrol ether = 1:10 \rightarrow 1:1) to give **4f** as a colourless solid (781 mg, 84 %).

4a: Starting with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **3a** (566 mg, 1.80 mmol), **4a** was isolated as a light yellow oil (305 mg, 76 %). ¹H NMR (acetone-d₆, 250 MHz): δ 1.28 (t, *J* = 6 Hz, 3 H, CH₃), 1.80 (quintet, *J* = 5 Hz, 2 H, CH₂), 2.52 (t, *J* = 5 Hz, 2 H, CH₂), 2.58 (t, *J* = 5 Hz, 2 H,

CH₂), 4.18 (q, J = 6 Hz, 2 H, OCH₂). ¹³C NMR (acetone-d₆, 75 MHz): δ 14.57 (CH₃), 21.16, 22.53, 25.14 (CH₂), 60.99 (OCH₂), 107.91, 123.13, 139.97, 152.72 (C), 165.08, 165.37 (CO). MS (EI, 70 eV): 224 (M⁺, 35), 178 (100), 150 (61). Anal.: calcd. for C₁₁H₁₂O₅: C 58.93, H 5.39. Found: C 58.76, H 5.50.

4b: Starting with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **3b** (590 mg, 1.80 mmol), **4b** was isolated as a light yellow oil (318 mg, 74 %). ¹H NMR (acetone-d₆, 250 MHz): δ 1.24 (d, *J* = 6 Hz, 6 H, CH₃), 1.76 (quintet, *J* = 6 Hz, 2 H, CH₂), H, CH₂2.46 (t, *J* = 6 Hz, 2), 2.54 (t, *J* = 6 Hz, 2 H, CH₂), 4.99 (hept, *J* = 6 Hz, 2 H, OCH). ¹³C NMR (acetone-d₆, 75 MHz): δ 20.99 (CH₂), 21.98 (CH₃), 22.34, 24.98 (CH₂), 68.46 (OCH), 108.23, 123.09, 139.64, 152.43, 164.47, 165.20 (C). MS (EI, 70 eV): 238 (M⁺, 42). Anal.: calcd. for C₁₂H₁₄O₅: C 60.50, H 5.92. Found: C 60.13, H 6.22.

4c: Starting with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **3c** (1.032 g, 3.00 mmol), **4c** was isolated as a light yellow oil (572 mg, 75 %). ¹H NMR (MeOH-d₄, 250 MHz): δ 1.78 (quintet, J = 7 Hz, 2 H, CH₂), 2.50 (q, J = 7 Hz, 4 H, CH₂), 3.38 (s, 3 H, CH₃), 3.62, 4.27 (2 x t, J = 5 Hz, 2 x 2 H, OCH₂). ¹³C NMR (MeOH-d₄, 62.5 MHz): δ 21.39, 22.88, 25.35 (CH₂), 59.22 (OCH₃), 64.90, 71.46 (OCH₂), 107.57, 122.98, 140.90, 154.25, 166.14, 166.27 (C). MS (EI, 70 eV): 254 (M⁺, 40). Anal.: calcd. for C₁₂H₁₄O₆: C 56.69, H 5.55. Found: C 56.48, H 5.67.

4d: Starting with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **3d** (622 mg, 1.80 mmol), **4d** was isolated as a light yellow oil (312 mg, 68 %). ¹H NMR (acetone-d₆, 250 MHz): δ 1.90 (quintet, J = 5 Hz, 2 H, CH₂), 2.66 (m, J = 5 Hz, 4 H, CH₂), 5.80 (br, OH), 7.40-7.85 (m, 5 H, Ph). ¹³C NMR (acetone-d₆, 75 MHz): δ 19.23 (CH₃), 20.74, 21.33, 22.77 (CH₂), 115.34, 122.51 (C), 128.93, 129.93, 133.43 (CH, Ph), 139.54, 149.96 (C), 164.79, 194.14 (CO). MS (EI, 70 eV): 256 (M⁺, 100), 227 (46), 105 (58), 77 (56). Anal.: calcd. for C₁₅H₁₂O₄: C 70.31, H 4.72. Found: C 70.18, H 4.90.

4e: Starting with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **3e** (540 mg, 1.80 mmol), **4e** was isolated as a colourless solid (208 mg, 55 %). ¹H NMR (CDCl₃, 250 MHz): $\delta = 1.35$ (t, J = 6 Hz, 3 H, CH₃), 2.78, 3.02 (2 x m, 2 x 2 H, CH₂), 4.28 (q, J = 6 Hz, 2 H, OCH₂), 5.30 (br, 1 H, OH). ¹³C NMR (acetone-d₆, 62.5 MHz): δ 13.75 (CH₃), 20.35, 31.79 (CH₂), 60.00 (OCH₂CH₃), 108.19, 132.80, 135.91, 156.49, 162.39, 168.34 (C). MS (EI, 70 eV): 210 (M⁺, 18). Anal.: calcd. for C₁₀H₁₀O₅: C 57.14, H 4.80. Found: C 57.50, H 4.92.

4f: Starting with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **3f** (1.08 g, 3.28 mmol), **4f** was isolated as a colourless solid (781 mg, 84 %), m. p. 78 °C. ¹H NMR (CDCl₃, 250 MHz): δ 1.28 (t, *J* = 6 Hz, 3 H, CH₃), 1.65-1.90 (m, 4 H, CH₂), 2.64 (m, 4 H, CH₂), 4.25 (q, *J* = 6 Hz, 2 H, OCH₂CH₃), 8.00 (br, 1 H, OH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 13.91 (CH₃), 23.88, 24.01, 26.59, 28.53 (CH₂), 61.55 (OCH₂CH₃), 117.21, 126.85, 141.60, 148.68, 164.82, 167.18 (C). MS (EI, 70 eV): 238 (M⁺, 100). Anal.: calcd. for C₁₂H₁₄O₅: C 60.50, H 5.92. Found: C 60.28, H 5.75.

4g: Starting with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **3g** (1.088 g, 3.20 mmol), **4g** was isolated as a colourless solid (600 mg, 75 %), m. p. 84 °C. ¹H NMR (CDCl₃, 250 MHz): δ 1.15 (s, 9 H, CH₃), 1.65-1.90 (m, 4 H, CH₂), 2.42, 2.59 (2 x t, *J* = 5 Hz, 2 x 2 H, CH₂), 7.90 (br, 1 H, OH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 24.64, 24.75 (CH₂), 27.07 (CH₃), 27.15, 30.91 (CH₂), 44.18 (*C*(CH₃)₃), 126.38, 127.24, 140.14, 141.54, 164.85, 213.56 (C). MS (EI, 70 eV): 250 (M⁺, 58). Anal.: calcd. for C₁₄H₁₈O₄: C 67.18, H 7.25. Found: C 67.02, H 7.37.

4h: Starting with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **3h** (1.094 g, 3.20 mmol), **4h** was isolated as a colourless solid (596 mg, 74 %), m. p. 92 °C. ¹H NMR (CDCl₃, 250 MHz): δ 1.27 (t, *J* = 7 Hz, 3 H, CH₂CH₃), 1.48 (m, 2 H, CH₂), 1.72 (m, 4 H, CH₂), 2.75, 2.80 (2 x t, *J* = 6 Hz, 2 x 2 H, CH₂), 4.24 (q, *J* = 7 Hz, 2 H, OCH₂), 8.00 (br, 1 H, OH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 14.02 (CH₃), 21.35, 22.38, 25.33, 26.41 (CH₂), 61.36 (OCH₂), 111.73, 125.80, 142.75, 153.06, 165.26,

166.83 (C). MS (EI, 70 eV): 252 (M⁺, 32). Anal.: calcd. for C₁₃H₁₆O₅: C 61.89, H 6.39. Found: C 61.62, H 6.60.

4i: Starting with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **3i** (1.032 g, 2.90 mmol), **4i** was isolated as a colourless oil (564 mg, 73 %). ¹H NMR (CDCl₃, 250 MHz): δ 1.50 (m, 6 H, CH₂), 1.68 (m, 4 H, CH₂), 2.72 (m, 4 H, CH₂), 3.79 (s, 3 H, OCH₃), 7.90 (br, 1 H, OH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 20.75, 21.59, 22.95, 24.62, 25.45, 26.41, 27.05 (CH₂), 52.39 (OCH₃), 117.70, 127.38, 143.39, 148.75, 164.81, 167.49 (C). MS (EI, 70 eV): 266 (M⁺, 60). Anal.: calcd. for C₁₄H₁₈O₅: C 63.15, H 6.81. Found: C 62.92, H 6.95.

4j: Starting with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **3j** (1.152 g, 3.00 mmol), **4j** was isolated as a colourless solid (615 mg, 70 %, *E*:*Z* = 1:4), m. p. 82 °C. ¹H NMR (CDCl₃, 250 MHz): δ 1.20-1.60 (m, 14 H, CH₂), 2.32-2.55 (m, 4 H, CH₂), 3.78 (s, 3 H, OCH₃), 8.00 (br, 1 H, OH). ¹³C NMR (CDCl₃, 62.5 MHz): *Z*-isomer: δ 20.30, 20.42, 23.22, 23.27, 24.61, 24.89, 25.39, 25.54, 25.65 (CH₂), 52.33 (OCH₃), 117.69, 126.33, 142.75, 146.60, 164.64, 167.61 (C). *E*-Isomer: δ 20.40, 22.63, 23.01, 23.22, 23.97, 24.45, 25.07, 25.23, 26.67, 29.28 (CH₂), 52.00 (OCH₃), 118.06, 126.83, 145.48, 154.16, 164.16, 168.30 (C). MS (EI, 70 eV): 294 (M⁺, 40), 263 (58), 249 (39), 234 (79). Anal.: calcd. for C₁₆H₂₂O₅: C 65.29, H 7.53. Found: C 65.18, H 7.68.

Synthesis of triflate (6): To a CH₂Cl₂ solution (7 mL) of butenolide **4h** (0.75 mmol, 190 mg) was added pyridine (1.88 mmol, 0.15 mL) and trifluoromethane sulfonic anhydride (0.90 mmol, 255 mg) at -78 °C. The temperature of the solution was warmed to 20 °C within 4 h and the mixture was stirred at 20 °C for 1 h. The reaction mixture was purified by chromatography (silica gel, CH₂Cl₂) to give **6** as a light yellow oil (225 mg, 78 %). ¹H NMR (CDCl₃, 250 MHz): δ 1.26 (t, J = 7 Hz, 3 H, CH₃), 1.47 (m, 2 H, CH₂), 1.65-1.80 (m, 4 H, CH₂), 2.71, 2.87 (2 x t, J = 7 Hz, 2 x 2 H, CH₂), 4.21 (q, J = 7 Hz, 2 H, OCH₂). ¹³C NMR (CDCl₃, 62.5 MHz): $\delta_{\rm C}$ 13.74 (CH₃), 20.80, 23.94, 24.20, 24.93, 25.81 (CH₂), 61.65 (OCH₂), 119.42 (C), 120.71 (CF₃, q, J = 113.9 Hz), 135.27,

146.02, 148.11, 159.72, 165.33. MS (EI, 70 eV): 384 (M⁺, 24). Anal.: calcd. for C₁₄H₁₅O₇SF₃: C 43.75, H 3.93. Found: C 43.68, H 3.75.

Synthesis of butenolide (7a): To a THF solution (3 mL) of triflate **6** (0.30 mmol, 115 mg) was added Pd₂dba₃·CHCl₃ (5 mol-%, 16 mg), P(2-furyl)₃ (10 mol-%, 14 mg) and LiCl (0.90 mmol, 39 mg). After stirring for 5 min trimethylphenylstannane (0.36 mmol, 0.086 mL) was added. After stirring for 24 h at 20 °C water (100 mL) was added. The aqueous layer was extracted with ether (4 x 100 mL) and the organic layer was dried (MgSO₄), filtrated and the solvent of the filtrate was removed *in vacuo*. The residue was purified by chromatography to give **14a** as a yellow solid (63 mg, 68 %). ¹H NMR (CDCl₃, 250 MHz): δ 1.24 (t, *J* = 7 Hz, 3 H, CH₃), 1.48 (m, 2 H, CH₂), 1.62-1.84 (m, 4 H, CH₂), 2.68, 2.85 (2 x t, *J* = 7 Hz, 2 x 2 H, CH₂), 4.20 (q, *J* = 7 Hz, 2 H, OCH₂), 7.10-7.30 (m, 5 H, Ph). ¹³C NMR (CDCl₃, 62.5 MHz): δ_{C} 13.70 (CH₃), 20.78, 23.92, 24.24, 24.92, 25.75 (CH₂), 61.58 (OCH₂), 119.40 (C), 126.28, 126.92, 128.02, 133.08, 135.27, 132.08, 148.11, 159.72, 165.33. MS (70 eV, EI), m/z (%): 312 (40) [M⁺], 229 (26), 201 (24). Anal.: calcd. for C₁₉H₂₀O₄: C 73.06, H 6.45; found: C 72.78; H 6.72.

Synthesis of butenolide (7b): To a THF solution (5 mL) of triflate **6** (0.46 mmol, 176 mg) was added Pd₂dba₃·CHCl₃ (10 mol-%, 48 mg), P(2-furyl)₃ (20 mol-%, 43 mg) and LiCl (1.38 mmol, 59 mg). After stirring for 5 min tetramethylstannane (0.55 mmol, 0.080 mL) was added. After stirring for 24 h at 55 °C water (100 mL) was added. The aqueous layer was extracted with ether (4 x 100 mL) and the organic layer was dried (MgSO₄), filtrated and the solvent of the filtrate was removed *in vacuo*. The residue was purified by chromatography to give **7b** as a yellow solid (74 mg, 64 %). ¹H NMR (CDCl₃, 250 MHz): δ 1.24 (t, *J* = 7 Hz, 3 H, CH₃), 1.50 (m, 2 H, CH₂), 1.62-1.82 (m, 4 H, CH₂), 2.15 (s, 3 H, CH₃), 2.70, 2.85 (2 x t, *J* = 7 Hz, 2 x 2 H, CH₂), 4.22 (q, *J* = 7 Hz, 2 H, OCH₂). ¹³C NMR (CDCl₃, 62.5 MHz): δ_{C} 8.10, 13.74 (CH₃), 20.82, 23.91, 24.25, 24.90, 25.84 (CH₂), 61.64 (OCH₂), 119.46, 132.14, 135.26, 148.14, 159.70, 165.31. MS (70 eV, EI), m/z (%): 250 (12) [M⁺]. Anal.: calcd. for C₁₄H₁₈O₄: C 67.18, H 7.25; found: C 66.90, H 7.48.

Synthesis of 1,3-Bis(trimethylsilyloxy)-1,3-butadiene (8). Diene 8 was prepared according to the procedure given for the synthesis of diene 3a. The dianion of cyclooctane-1-3-dione was generated in the presence of HMPA (2 equiv.). Starting with cyclooctane-1,3-dione (840 mg, 6.00 mmol), 8 was isolated as a light yellow oil (1.30 g, 76 %). The crude material was used for the cyclization reaction with oxalyl chloride. ¹H NMR (CDCl₃, 250 MHz): δ 0.12, 0.22 (2 x s, 2 x 9 H, Me₃Si), 1.40-1.70 (m, 4 H, CH₂), 1.98, 2.24 (2 x m, 2 x 2 H, CH₂), 4.90 (t, *J* = 11 Hz, 1 H, CH), 4.98 (s, 1 H, CH). MS (EI, 70 eV): 284 (M⁺, 12), 73 (100). HRMS calcd. for C₁₄H₂₈O₂Si₂: 284.1628, found 284.1626.

Synthesis of Butenolide (9): Butenolide **9** was prepared according to the procedure given for the synthesis of butenolides **4a-j**. Starting with 1,3-bis(trimethylsilyloxy)-1,3-butdiene **8** (425 mg, 1.50 mmol), **9** was isolated as a light yellow oil (178 mg, 61 %). ¹H NMR (CDCl₃, 250 MHz): δ 1.72, 1.95 (2 x m, 2 x 2 H, CH₂), 2.57 (m, 4 H, CH₂), 5.79 (s, 1 H, CH), 7.40 (br, 1 H, OH). ¹³C NMR (CDCl₃, 62.5 MHz): δ 19.68, 21.81, 25.67, 41.75 (CH₂), 108.02 (CH), 122.78, 144.44, 157.08, 164.48 (C), 204.71 (CO). MS (EI, 70 eV): 194 (M⁺, 28). Anal.: calcd. for C₁₀H₁₀O₄: C 61.85, H 5.19. Found: C 61.60, H 5.42.